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Abstract

The monetary optimization of thermodynamic processes may be approached by inherently thermodynamic frameworks like exergo-
economic analysis, or a rigid direct cost evaluation is applied. This paper, treating the optimization of a combined cycle power plant, follows
the second path. Operation and investment costs are usually treated as a combined value by means of an annualization factor. Due to tt
rather far-stretching time horizon of turbine energy conversion systems, differing behaviour of those contributions with time, and varying
subjective weighting and assumptions of future developments, this conventional subsumption is not necessarily a sensible one to identify the
best solution for a given decision situation. It is therefore favorable to address both costing goals independently and identify the pareto set of
the problem prior to a final decision on which parametrization of the system should be chosen. A numerical pareto optimization technique
based on an evolutionary base strategy is discussed that addresses this type of problem in an efficient and easy to adapt manner.
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1. Introduction as most target functions show conflicting behaviours when
considered simultaneously. Typical examples are efficiency
Upon closer scrutiny the optimization of a power plant, Vs. power output of thermodynamic systems, total costs vs.
like most practical optimization problems, is to be defined pollutant emission of combustion systems, or investment vs.
as multi-criterial, i.e., more than one target function is to be operating costs for almost any practical process.
pursued in the process of system amelioration. Even though only one system design will be put into
Addressing this multi-criteriality, the dubiousness of sub- practice, the determination of the pareto set is of practical
jective weight functions is obvious in target values for importance: Knowing it a relative weighting of the targets
different scaling, like cost and, e.g., pollutant emission. In can be questioned with respect to small losses in one and
such a trade-off the relative weighting depends heavily on potential great gains in another single target by shifting it
the attribution of values by the definer and cannot be con- appropriately. Thus pareto optimization puts any particular
sidered objective. Even when investigating just pure costs selection on a rational basis.
of a technical system, annualized investment costs may be  As a demonstration process for the pareto optimization
compared to operating costs only after a somewhat arbitraryapproach we investigate the costs of a combined cycle power
setting of the factor of annualization. It is therefore gener- generation system, separated into investment and operation
ally desirable to independently but simultaneously pursue costs, whose performance depends on eight configuration
each target function during the optimization process. Suchgyiaples. The optimization is performed by an evolution-
an approach usually does not yield a single optimal solu- 51y harameter optimizer coupled black-box-wise to a system
tion but a tradeoff set of so-called pareto-optimal solutions, gjmy|ator. The investigated process serves as a computation-
ally rather simple test bed for our evolutionary approach.
~* Corresponding author. Since only real-valued configuration variables are to be op-
E-mail address: lucas@ltt.rwth-aachen.de (K. Lucas). timized a mostly homogeneous and smooth pareto set may
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Nomenclature

C investmentcosts ................... ..., Uuss T temperature . ... [
m mass flowrate ........oooeenn . kgt ATin  logarithmic mean temperature difference.... K
p PrESSUME. ..ottt et aie e MPa  Greek symbols

P mechanical power.................. ... kW s isentropic efﬁciency

0 heattransferrate........................ kW II¢ compressor pressure ratio

be anticipated. Nevertheless the woes of optimizer tuning, is re-superheated in the HRSG and conducted to the low
automated population size adaptation, simulator-optimizer pressure turbine. Finally, the expanded steam is condensed
coupling, treatment of simulator instabilities, and similar in the condenser. The remaining heat is discharged to the
may be investigated with such a problem, with more of those environment by cooling water and a cooling tower. The
issues to appear in more difficult cases. mechanical work of the gas turbine and the steam turbine
is converted into electricity in one single generator.
In particular the thermodynamic model consists of the
2. The combined cycle power generation process independent mass and energy balances and the equations
for evaluating the thermodynamic properties. These have

A combined cycle power generation process has beent0 be determined for the gaseous substances [7] and for
chosen to illustrate the pareto optimization approach. The Water/steam [14]. Additionally some restrictive conditions
flowsheet of the 100 MW power plant is shown in Fig. 1. on the basis of the 2nd Law of Thermodynamics are
The plant employs a simple gas turbine system fueled by implemented in the thermodynamic simulator, which have
methane, consisting of an air compressor, a combustionto be checked during process simulation. If at least one
chamber and a turbine. The methane is completely burnedrestriction is not fulfilled, the values of the target functions
at constant air ratio of = 1.1. To adjust the exhaust gas are set to very high pseudo-values in order to render this
temperaturd’ at the turbine’s inlet a part of the compressed solution proposition as non-competitive for the evolutionary
air bypasses the combustion chamber and is mixed with algorithm.
the hot exhaust gas leaving the combustion chamber. The Only eight real-valued configuration variables (tempera-
expanded gas is led to a heat recovery steam generatotures and pressures) are to be optimized in the process under
(HRSG) with two pressure lines. The feed water is heated, consideration, with the free parameters’ lower/upper bound-
evaporated and superheated at high pressure in the HRSGaries, due to material and physical restrictions, defined as
After expansion in the high pressure turbine the steam follows:

-:i_é,:i CH,

(1-p) Y

HP

air @

)
-/

exhaust gas

Fig. 1. Schematic of the investigated 100 MW combined cycle power plant.
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e compressor pressure rafify < 16; considered targets. In particular it unveils sensitivities in
e exhaust gas temperature entering the gas turfing the trade-off of individual goals. As the pareto set of an
1650 K; optimization problem may show regions of stagnation in
e exhaust gas temperature leaving the HRBG: 433 K; one target function accompanied by remarkable changes in
e steam pressure entering the high pressure steam turbin@nother one, accepting just a minor change in the slowly
p7 < 200 bar; varying target function may yield very favourable ones in

e steam temperature entering the high pressure steam(one of) the other.
turbineTy < 850 K;
e steam pressure entering the low pressure steam turbine8.2. Evolutionary approach
p9 < 200 bar;
e Steam temperature entering the low pressure steam In contrary to conventional, analysis-based (single cri-
turbineTy < 850 K; terion) optimization algorithms evolutionary approaches do
e condenser pressuyap > 6 kPa. not try to identify a single (optimally estimated), direct ap-
proach to the optimal parameter settings of the problem in
The investment costs of the power plant are calculated onquestion. Instead, imitating nature, they utilize a set of sys-
the basis of functions for each plant component dependingtem propositions defined by their respective configuration
on relevant process parameters [3], see Appendix A. Theparameter values and characterized by their resulting target
annual fuel costs are determined using 3 US$/GJ-LHV as thefunction value(s). Those system representations may be in-
unit cost of fuel based upon the fuel’'s lower heating value, terpreted as a kind of biological “individuals”.
which is multiplied by the mass flow rate of fuel. Search steps are not calculated from discretized analysis-
The simulator includes both the thermodynamic model related steepest descent considerations but occur randomly,
and the calculation of investment costs and fuel costs although not blindly, by taking the most promising individ-
respectively. The simulator has been implemented as a C++uals as originators of generation-wise new parameter test
software program using classes for certain groups of plantsets. Therefore the usual pitfalls of analytical optimization
components like heat exchangers etc. approaches for non-steady, non-derivative functions do not
apply for this kind of proceeding. As numerous variants of
evolutionary optimization algorithms have been published

3. Evolutionary pareto optimization and studied extensively, both for single target function op-
timization (e.g., [2,8,11-13]) and for multi-criterial problem
3.1. Concept of pareto set optimization sets [1], we will restrict ourselves to the description of the

particular evolutionary pareto algorithm chosen here for the

Multi-criterial optimization in general, and pareto opti- combined cycle treatment and its specialties.
mization in particular have been discussed in so many papers The basic toolbox adapted for the combined cycle opti-
(a collection of more than eight hundred, with a special focus mization is BP0 [9]. EPOis a rather simple generation based
on evolutionary computation even, may be found at [1]) that evolutionary optimizer for real-valued parameters. Already
it seems futile to include a basic introduction to the concept in its single-criterion variant it allows for several adaptations
in this paper. Only some non-exhausting and subject-relatedof the basic evolutionary strategy, though, and thus is a suit-
aspects will be given on that subject to alleviate reading. able basis for a multi-criterial extension.

The general idea of pareto optimization is notto weighin- ~ The most prominent features oPE are:
dividual goals of an optimization problem prior to knowing

its pareto set, being defined Hye complete set of paramet- e Existence of recombination, i.e.: New parameter test
ric solutions in which one partial target value can only be sets are constructed by mixing two promising former
improved by compromising on at least one other target. This variants, thus allowing for a parameter volume search,

property of the pareto set must be viewed in concordanceto  compared to a mutation originated random line search.
the existing boundary conditions of the given problem, inthe e Continuous change in between of “comma strategy” and

present case mostly imposed by technical restrictions like “plus strategy” [11].
maximum temperatures or pressures, minimal flux rates, and e Simple invocation subroutines for external (black box)
the like. Itis subject to change if new technical solutions like linkage of simulation routines or stand-alone programs.

improved materials for turbine blades or new cooling mech-
anisms spring into existence. Therefore any given pareto set Depending on the settings of the applied evolution strat-
reflects the momentary state of the (technical) art, and needsgy parameters, a trade-off of parameter space volume vs.
to get re-calculated at changes of the latter. line search may be defined. It is found that, depending on
The pareto set is a set and not just the only one solutionthe topology of the target function and on the maturity of
for a given practical problem, as multiple target functions an actual optimization run, differing strategical approaches
tend to fight each other. It is, however, a solid basis to draw seem best suited, but cannot be assessed beforehand. One
serious conclusions and reflect on individual weightings of main strategy ruler for this decision is the relative remanence
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of comparatively well-suited solutions in the set of reproduc- rough idea about a parameter set’s ranking with respect to
ing individuals. Therefore in our approach we regard the soft the pareto property but do not claim to be well-defined.
switching between the extremes of comma and plus strategy

as rather important, by introducing a general deterioration Density balancing along the pareto front. The topological
factor for parents in their competition with their offspring. complexity in target function space and hence the difficulty
The particular functions of Bo as discussed in [9] have in finding improved solutions may change along the pareto
proven to be appropriate for other sophisticated optimization front. On the other hand, a more or less dense coverage of

problems [4-6,10]. it is required to characterize it correctly. Therefore offspring
EPos basic strategy was modified for the pareto optimiza- are generated from the members of the best list on a (lack
tion with respect to the following issues: of) density of existing solutions basis: After determination

of the members of the best list this list is sorted for average
Variable number of individuals in a generation. In a distances to the next neighbors, and individuals are taken
monocriterial optimization approach the size of the best list Prédominantly from the more sparsely populated regions,
taken as parents for the generation of new parameter sefhts Probingthose regions more extensively for better pareto
variations mainly serves the purpose of genotypic variability. front solutions. During the course of an actual optimization

It aims at preventing the optimization run to get stuck in Un One can clearly observe the impact of this strategy as
suboptimal solutions sparsely populated regions become denser and denser with

In pareto optimization the best list also serves the purposegrov‘_’Ing generathn count._ .
of knowledge accumulation about the shape and extension of Since the_basm evolutionary algothm does no_t draw
the pareto set. In order to represent the pareto set as densel ny conclus_lons fro_m the mathematlcgl formulatlo.n (.)f
as possible a variability of the size of the best list has been e models in question and their steadiness or derivative

introduced, with every parameter set proposition exhibiting properties, it is pqssible to implement the actual acquisition
the pareto property in a given state of convergence beingofthetargetfunctlon value(s) as a black-box approach. It can

retained therein. be obtained from any simulation tool if an algorithmically

. organized interface between simulator and optimizer is
A new-found well-adjusted parameter set may outper- :
available.
form several former members of an older pareto set ap-

proximation. In that case it replaces all of the old members, An |rr_1portant aspect of any nu_merlcal optlm_lzatlon ap-
leading to a shrinking of the best list, proach is the tackling of simulation faults. With the ex-

ception of some very well-established and widely used

) . ) computer codes most simulation tools have convergence and
Introduction of a pareto selection method.  After determi-  ymerical stability problems, at least in certain regions of pa-
nation of the target function values of all new parameter set ;ameter space. For analysis-based line search strategies this
propositions, a one-by-one paired comparison would be nec-poses a huge problem, as faulty or even no target functions
essary for each target function to assess the relative merits ogetums will misguide the strategy into wrong interpretations
all sets correctly. This requires an extensive sorting effortfor o premature terminations. Evolution strategies, however,
larger populations. On the other hand, after just some initial ¢gn cope with a certain amount of faulty target function
generations the detection of the pareto property is the only returns as such settings will only be able to propagate in re-

really interesting sorting criterion. combination with others—which usually will not work.
Therefore a fast classifying algorithm based on a ranking

minimization system was developed that is designed to

assess true pareto property solutions correctly. After the 4, Obtaining the pareto set for the combined cycle
determination of all target function values for every new process

parameter set proposition in a given generational step the

ranks of all parameter sets are set to zero. Next, the target For the combined cycle power plant optimizatiord
function values of the first parameter set proposition are was coupled to a custom simulator program. As both opti-
compared to those of every other proposition, but only with mizer and simulator stem from different sources and utilize
respect to being a relative pareto solution or not. In case oneat least slightly different programming languages (C and
solution of the comparison pairs is found to be dominated C++) a fully disjunct program coupling via parameter and
by the other its rank is set to higher value than both former result files was preferred over a direct coupling, minimizing
values. If neither of the two compared sets dominates the potential interferences of source codes.

other the maximum value of both former ranks are givento  As anticipated for such a custom built simulation environ-
both of them. The second parameter set needs only to bement the program was not completely stable and produced
compared to the remaining— 2 ones and so forth. In the  endless loops for some parameter settings. To overcome
end, onlyn - (n — 1)/2 comparisons have to be performed respective deadlocks (optimizer waiting for the simulation
to ascertain that the true pareto front parameter sets have thengine to return values before submitting a next set of differ-
lowest possible ranking value of zero. Larger values give a ing parameters for calculation) a runtime inspection facility
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Fig. 2. Approaching the pareto set of the combined cycle power system in the course of evolutionary generations. The later generations ardirersdered as
for clarity of presentation although they consist of individual points like the first ones.

has been introduced into the optimizer, limiting the maxi- As solutions exhibiting a real pareto property are usually
mum execution time of the simulator. If this is exceeded the not eliminated from the best list it starts to grow as the
simulation process is killed by the optimizer, the respective front gets populated more and more densely with increasing
parameter set is discarded, and a different one is submitteddeneration number. For our problem this growth reduces by
for calculation instead. Infinite loop problems have been ob- @nd changes into a fluctuation when approaching best list
served for several percent of submitted calculation runs, their Sizes of about 1500. At that point in convergence minimal
frequency strongly depending on the investigated parameterChangeS in target value improvement tend to annihilate about

space regions. The cost functions are calculated as detailedN® Same number of former pareto front members as new
in Section 2 ones are found.

The optimization process was started with an initial The absolute improvement of target functions becomes

parent list size of 400 and an offspring of 200 per generation, smaller and smaller over the course of generations: While

e the advance of the pareto front is quite fast in the first tens of
The parent list size was allowed to expand to not more than . . : ;
L . generations, the difference of generation 150 and 730, with a
2000 individuals, with the number of new parameter sets per

! L ) P~ respective number of additional parameter sets having been
generation kept constant. The initial generation was defined

; _ probed, only provides a marginal improvement in most parts
by randomly set parameter values in the given allowed ot he pareto set. Test runs with significantly more than 1000
ranges.

_ o _ _ generations only exhibited neglegible further improvements
During an optimization run (see Fig. 2) the first true compared to the depicted one.

pareto front develops after about 100 generations. Ear-

lier generations just exhibit a best list distributed two-

dimensionally in target function space, but more and more 5. Dijscussion of the pareto set

flattening out towards the sought trade-off curve of the target

functions (Fig. 2, low generation counts). Due to the applied  The pareto front of the given combined cycle monetary
selection algorithm the number of individuals in the best list pareto optimization shows a smooth, non-interrupted behav-
stays at the defined lower bound until the first true pareto iour when viewed in target function space. This was not
front appears. necessarily to be expected as some of the target function con-
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Table 1

Comparison of two parameter settings leading to comparable aggregated cost values. Explanation see text

Target function/variable Low investment cost variant A Low operation cost variant B
Annual fuel costs B2 x 10’ US$ 220 x 10’ US$
Total investment costs 32x 107 US$ 281x 107 US$
Compressor pressure rafife 11.9 11.2
Exhaust gas temperature entering the gas turbine 1516 K 1516 K
Exhaust gas temperature leaving the HR&G 932K 461 K
Steam pressure entering the high pressure steam tuyshine 122 bar 84 bar
Steam temperature entering the high pressure steam tufpine 814 K 805 K
Steam pressure entering the low pressure steam tuplgine 32.1 bar 2.2 bar
Steam temperature entering the low pressure steam turhine 820 K 424 K
Condenser pressugg g 0.06 bar 0.06 bar

tributions behave unsteadily when phase changes of watering an identical aggregated quality those solutions differ
are involved in heat exchangers etc. Despite of these mathesignificantly with respect to the relative contribution of op-
matical complications the pareto set was readily computed. erating and investment costs. As expected those solutions
At the finally determined pareto front the whole system does have quite different parameter settings, as detailed in Ta-
not seem to operate on phase change conditions as the reble 1. Scrutinizing the given parameter sets the plausibility
sulting curve does not show unsteady points. of variant B, especially the low inlet pressuyse of the low

The shape of the curve represents the expected trade-ofporessure turbine, might be questioned. This is caused by the
situation where investment costs are to be judged againstsimulation model, though. There is no additional restriction
operation costs. Reducing operation costs below ah@w 2  implemented that would limit a further decrease of this free
107 US$ is either not possible or requires huge investment parameter for economic reasons. Only the thermodynamic
costs. On the other hand, a reduction of investment cost tofeasibility is ensured by comparing this parameter to the
less than Ix 10’ US$ will increase operating costs beyond condenser pressure. Therefore, the low value of the low pres-
sensible limits. sure steam in case B is due to uncertainties of the apparatus

In the given case of pure monetary target functions cost modeling in interaction with thermodynamic reasons as
one may use familiar economic relationships to aggregatea side effect of the way the water/steam is guided through
operation and investment costs in the habitual way. Any the HRSG (see Fig. 1). In practice, the low pressure turbine
such aggregation will define a linear superposition of the would be omitted in this case.
originally separate cost domains that may be expressed as The reduced fuel costs of the system propositions lying
a tilted new “optimization axis”, equivalently expressed by on the concave, almost linear section of the pareto curve
arbitration iso-lines perpendicular to that axis. The angle of are primarily based on the reduction of the exhaust gas
such iso-lines therefore may as well define the individual temperaturdy at the outlet of the HRSG. If this value falls
cost model. If, as an extreme example, only operation costsbelow 600 K, respective low values for the low pressure
would be considered, the arbitration axis would coincide steam are needed to use the exhaust gas optimally.
with the abscissa of our plot, and iso-lines would be parallel  Laying even more stress on operation costs the pareto
to the ordinate. Due to the uncertainties of cost modeling set solutions map to the aggregated cost function again
and subjective arbitration the superposition of the two cost in a rather unspectacular way of slowly shifting relative
contributions leaves quite a range of sensible monetaryweights, the dashed line being a representative of this range.
assumptions. Three exemplaric representatives of iso-lineHere an exponential increase of the investment costs is
sets (dashed, dash-dotted, dotted) are given in the paretdound for individuals with a constant minimum temperature
diagram of the combined cycle process. Each of them Tg = 433 K. The increase is due to the remaining free
identifies at the respective point of tangential touch the parameter changes that have the greatest effect on costs
respective “optimal” achievable target function values. in this constellation, likeTs, I1¢ and p7. Finally, all of

If we start our investigation of the pareto set at the them reach their maximum allowed values at the exergetic
dotted line, which represents a relatively strong stress onoptimum, which marks the left end of the pareto curve,
investment costs, a slight change in arbitration in fond considering the given restrictions for the free parameters.

of operation costs will shift the relative contribution of In our travel of changing relative weightings we never
target functions and hence the structure of the parameterexperienced a situation, though, where solutions at operating
propositions only slightly. costs of about % 10’ US$ would be the ones to be chosen as

Tilting the arbitration iso-lines even more we eventually optimal, due to a region of concavity in the trade-off curve.
arrive at the dash-dotted situation where we observe a coin-Nevertheless these solutions are members of the pareto set
cidence of aggregated quality for solutions quite separatedand do make sense to be determined and scrutinized: For any
in target function and in parameter space. Although yield- practical system to be constructed it may be most favorable
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to limit both operating and investment costs, even if the to subjective differences and uncertainties of priority set-
resulting solutions are slightly lower rated in a simple linear tings. Even if non-linear cost function superpositions are to
overall cost model. It may be a sensible means to boundbe included in the set of sensible attribution the identified
the ill effects of uncertainties and flaws in any individual pareto set allows an estimate of the amount of non-linearity
target function calculation by not following a very pointed involved to yield further interesting solutions.
construction proposition. With more complex simulative calculations expected for
The mathematical representation of such a relative more elaborate models the accumulating computing time
weighting may be constructed by non-linear models on the will no doubt rise significantly, but as of now the most
operation costgop(X) and investment costfn (X) for any efficient absolute optimization time reduction potential,

investigated parameter sétlike parallelization, has not yet been exploited. Every target
@ fop+ Bfinv function determination of an individual parameter setting
Qeff = —2 — /W 4 o) fop- fiv (¥ <0), is completely independet of any other, so the calculations
a+p . . . . .
o o may well be performed in parallel. With growing simulation
taking into account coincidence factors @s- fop - finv time requirements the relative part of parallelizable code in

contributing to the overall solution proposition quality. a complete optimization iterative step becomes significantly
Resulting arbitration iso-lines are no more straight but more |arger, so according to Amdahl’s law the expected gain
or less curved into the concave regions of the pareto setin performance grows as well. For demanding simulations
depending on the strengths of the non-linearity factor. with individual system simulation times of several minutes a
In any case, a pareto optimization performed prior to fix- speedup of several tens to several hundreds is realistic if an

ing the relative weights of target function attribution will appropriate number of (cheap consumer system) processors
capacitate the decision makers to reflect on the importancejs available.

of the individual targets. It yields, at the same time, an im-
mediate overview on disadvantages incurred by pronouncing

a certain partial target function. Appendix A. Cost functions (see also [3])

Air compressor:
6. Conclusions and outlook
Cac = c11 - mair- ——— - I1c - In(I1¢)

Evolutionary pareto optimization has proven to be ap- €12—17sC
plicable to parametrically defined combined cycle power c13=44.71$(kg-s)™!
plant models. The optimization method behaved robust in c12=0.95
spite of occasional convergence problems of the applied
simulation model. With typical model simulation times of Combustion chamber:
less than one minute the problem could be solved during 1
some hours on a simple single-CPU personal computer, butCcc = c21 - riair - (1+ 22 Tou=c23)) . 0.995= o/ e

: , : N -995— pout/ Pin

without any in-depth mathematical scrutinization of the un- L
derlying model. c21=2898 $(kg-s)

The same pareto set could have been determined instead,, = 0.015 K1
by sequential application of numerous aggregated individual

oo . L c3=1540 K
weighting sets. In order to assess the merits of coincid-
ing partial qualities, though, the investigation of pure linear Gas turbine:
superimposed relative weights would not suffice, thus ren- 1 Pin
dering the required efforts for this “simple” approach as CoT=c31" igas '|ﬂ<—>
quite large. Furtheron the application of faster deterministic
optimum search methods would have to cope with mathe-
matical peculiarities of the target functions and would, in the 31 = 30145 $(kg-s)~2
course of a large number of automatically defined optimiza-
tion runs, presumably not always proceed to the respective©32 = 0.94
global optimum. c33=0.025 K1

The result of the optimization process, the pareto set of
the problem, yields an immediate choice of parameter sets
for whatever relative weighting is considered as the most 0; \°8
appropriate one for the actual design problem by the final CHRSG= c41- Z(fp,i - JT.steami * /T, gasi - <F) )
decision makers. For any relative set of weights the stabil- i In,i
ity of the resulting decision with respgct to frhe configuration T can- Z Fo.j - titsteam) + €43 'héfs
parameter set to be chosen may be investigated with respect .

€32 — NsT
x (1 + ¢33 (Tn—1570 K))

Pout

Heat recovery steam generator:

J
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Di
.902
30 bar+090 9

ST steami =1+ eXp( Toutsteanii — 830 K)
’ A

fpi =0.0971-

500 K

Toutgasi - 990 K
500 K

ca1= 41318 $(kW-K)°8
c42 = 13380 $(kg-s)~*
ca3= 14897 $(kg-s)~1?

frgasi =1+ exp(

Steam turbine:

0.05 \°
oo (1 (25
— s

Tin — 866 K

c51 = 38805 $kw 07

Condenser and cooling tower:
QCond
k- ATin
x (—0.6936- In(Tcw — Twe) + 2.1899
ce1=28074$m2
ce2 = 746 $(kg-s)*
k = 2200 W(m2-K)~1

Cc=ce1- +ce2-mcw + 70.5- QCOnd

Feed water pump:

0.2
Cr=cn1- Pg'7l<1+ m>
— s

c71= 70548 $(kg-s)*
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